Step of Proof: strict_part_wf
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
strict
part
wf
:
T
:Type,
R
:(
T
T
),
a
,
b
:
T
. strict_part(
x
,
y
.
R
(
x
,
y
);
a
;
b
)
latex
by ((Unfold `strict_part` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
P
&
Q
,
x
(
s1
,
s2
)
,
strict_part(
x
,
y
.
R
(
x
;
y
);
a
;
b
)
,
t
T
,
,
x
:
A
.
B
(
x
)
Lemmas
not
wf
origin